4753 (C3) Methods for Advanced Mathematics

	$\begin{aligned} & \mathrm{e}^{2 x}-5 \mathrm{e}^{x}=0 \\ & \mathrm{e}^{x}\left(\mathrm{e}^{x}-5\right)=0 \\ & \mathrm{e}^{x}=5 \\ & x=\ln 5 \text { or } 1.6094 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	factoring out e^{x} or dividing $\mathrm{e}^{2 x}=5 \mathrm{e}^{x}$ by e^{x} $e^{2 x} / e^{x}=e^{x}$ $\ln 5$ or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x=0$
	$\begin{aligned} & \ln \left(\mathrm{e}^{2 x}\right)=\ln \left(5 e^{x}\right) \\ & 2 x \quad=\ln 5+x \\ & x=\ln 5 \text { or } 1.6094 \end{aligned}$	M1 A1 A1 A1 [4]	taking lns on $\mathrm{e}^{2 x}=5 \mathrm{e}^{x}$ $2 x, \ln 5+x$ $\ln 5$ or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x=0$
$\begin{aligned} & 2 \\ & \Rightarrow \end{aligned}$	$\begin{aligned} & \text { When } t=0, T=100 \\ & 100=20+b \\ & b=80 \\ & \text { When } t=5, T=60 \\ & 60=20+80 \mathrm{e}^{-5 k} \\ & \mathrm{e}^{-5 k}=1 / 2 \\ & k=\ln 2 / 5=0.139 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	substituting $t=0, T=100$ cao substituting $t=5, T=60$ $1 / 5 \ln 2$ or 0.14 or better
$\begin{aligned} & \quad \text { (ii) } \\ & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{aligned} & 50=20+80 \mathrm{e}^{-k t} \\ & \mathrm{e}^{-k t}=3 / 8 \\ & t=\ln (8 / 3) / k=7.075 \mathrm{mins} \end{aligned}$	M1 A1 [2]	Re-arranging and taking lns correctly - ft their b and k answers in range 7 to 7.1
	$\begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3}\left(1+3 x^{2}\right)^{-2 / 3} \cdot 6 x \\ =2 x\left(1+3 x^{2}\right)^{-2 / 3} \end{gathered}$	M1 B1 A1 [3]	chain rule $1 / 3 u^{-2 / 3} \text { or } \frac{1}{3}\left(1+3 x^{2}\right)^{-2 / 3}$ o.e but must be '2' (not 6/3) mark final answer
	$\begin{aligned} 3 y^{2} \frac{d y}{d x} & =6 x \\ \mathrm{~d} y / \mathrm{d} x & =6 x / 3 y^{2} \\ & =\frac{2 x}{\left(1+3 x^{2}\right)^{2 / 3}}=2 x\left(1+3 x^{2}\right)^{-2 / 3} \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { E1 } \\ {[4]} \\ \hline \end{array}$	$\begin{aligned} & 3 y^{2} \frac{d y}{d x} \\ & =6 x \end{aligned}$ if deriving $2 x\left(1+3 x^{2}\right)^{-2 / 3}$, needs a step of working

$\text { 4(i) } \begin{aligned} \int_{0}^{1} \frac{2 x}{x^{2}+1} \mathrm{~d} x & =\left[\ln \left(x^{2}+1\right)\right]_{0}^{1} \\ & =\ln 2 \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	$\begin{aligned} & {\left[\ln \left(x^{2}+1\right)\right]} \\ & \text { cao (must be exact) } \end{aligned}$
	M1 A1 A1 [3]	$\begin{aligned} & \int \frac{1}{u} \mathrm{~d} u \\ & \text { or }\left[\ln \left(1+x^{2}\right)\right]_{0}^{1} \text { with correct limits } \\ & \text { cao (must be exact) } \end{aligned}$
$\text { (ii) } \begin{aligned} \int_{0}^{1} \frac{2 x}{x+1} \mathrm{~d} x & =\int_{0}^{1} \frac{2 x+2-2}{x+1} \mathrm{~d} x=\int_{0}^{1}\left(2-\frac{2}{x+1}\right) \mathrm{d} x \\ & =[2 x-2 \ln (x+1)]_{0}^{1} \\ & =2-2 \ln 2 \end{aligned}$	M1 A1, A1 A1 A1 [5]	$\begin{aligned} & \text { dividing by }(x+1) \\ & 2,-2 /(x+1) \end{aligned}$
$\text { or } \begin{aligned} & \int_{0}^{1} \frac{2 x}{x+1} \mathrm{~d} x \quad \operatorname{let} u=x+1, \Rightarrow \mathrm{~d} u=\mathrm{d} x \\ &=\int_{1}^{2} \frac{2(u-1)}{u} \mathrm{~d} u \\ &=\int_{1}^{2}\left(2-\frac{2}{u}\right) \mathrm{d} u \\ &=[2 u-2 \ln u]_{1}^{2} \\ &=4-2 \ln 2-(2-2 \ln 1) \\ &=2-2 \ln 2 \end{aligned}$	M1 B1 M1 A1 A1 [5]	substituting $u=x+1$ and $\mathrm{d} u=\mathrm{d} x$ (or $\mathrm{d} u / \mathrm{d} x=1$) and correct limits used for u or x $2(u-1) / u$ dividing through by u $2 u-2 \ln u$ allow ft on $(u-1) / u$ (i.e. with 2 omitted) o.e. cao (must be exact)
5 (i) $a=0, b=3, c=2$	B $(2,1,0)$	or $a=0, b=-3, c=-2$
(ii) $a=1, b=-1, c=1$ or $a=1, b=1, c=-1$	$\begin{aligned} & \mathrm{B}(2,1,0) \\ & {[4]} \end{aligned}$	
	B1B1 M1 E1 [4]	condone f and g interchanged forming $\operatorname{gf}(-x)$ or $\operatorname{gf}(x)$ and using $\mathrm{f}(-x)=-\mathrm{f}(x)$ www
$\begin{array}{ll} 7 & \text { Let } \arcsin x=\theta \\ \Rightarrow & x=\sin \theta \\ & \theta=\arccos y \Rightarrow y=\cos \theta \\ \Rightarrow & \sin ^{2} \theta+\cos ^{2} \theta=1 \\ \Rightarrow & x^{2}+y^{2}=1 \end{array}$	M1 M1 E1 [3]	

$\begin{array}{ll} \text { 8(i) } & \text { At P, } x \cos 3 x=0 \\ \Rightarrow & \cos 3 x=0 \\ \Rightarrow & 3 x=\pi / 2,3 \pi / 2 \\ \Rightarrow & x=\pi / 6, \pi / 2 \\ & \text { So P is }(\pi / 6,0) \text { and Q is }(\pi / 2,0) \end{array}$	M1 M1 A1 A1 [4]	or verification $3 x=\pi / 2,(3 \pi / 2 \ldots)$ dep both Ms condone degrees here
$\begin{aligned} & \text { (ii) } \frac{d y}{d x}=-3 x \sin 3 x+\cos 3 x \\ & \qquad \text { At } \mathrm{P}, \frac{d y}{d x}=-\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}=-\frac{\pi}{2} \\ & \text { At TPs } \frac{d y}{d x}=-3 x \sin 3 x+\cos 3 x=0 \\ & \Rightarrow \quad \cos 3 x=3 x \sin 3 x \\ & \Rightarrow \quad 1=3 x \sin 3 x / \cos 3 x=3 x \tan 3 x \\ & \Rightarrow \quad x \tan 3 x=1 / 3 * \end{aligned}$	M1 B1 A1 M1 A1cao M1 E1 [7]	Product rule $\mathrm{d} / \mathrm{d} x(\cos 3 x)=-3 \sin 3 x$ cao (so for $\mathrm{d} y / \mathrm{d} x=-3 x \sin 3 x$ allow B1) mark final answer substituting their $-\pi / 6$ (must be rads) $-\pi / 2$ $\mathrm{d} y / \mathrm{d} x=0$ and $\sin 3 x / \cos 3 x=\tan 3 x$ used www
$\text { (iii) } \begin{aligned} & A=\int_{0}^{\pi / 6} x \cos 3 x d x \\ & \text { Parts with } u=x, \mathrm{~d} v / \mathrm{d} x=\cos 3 x \\ & \mathrm{~d} u / \mathrm{d} x=1, v=1 / 3 \sin 3 x \\ & \Rightarrow \quad A=\left[\frac{1}{3} x \sin 3 x\right]_{0}^{\frac{\pi}{6}}-\int_{0}^{\pi / 6} \frac{1}{3} \sin 3 x d x \\ &=\left[\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x\right]_{0}^{\frac{\pi}{6}} \\ &=\frac{\pi}{18}-\frac{1}{9} \end{aligned}$	A1 M1dep A1 cao [6]	Correct integral and limits (soi) - ft their P , but must be in radians can be without limits dep previous A1. substituting correct limits, dep $1^{\text {st }} \mathrm{M} 1$: ft their P provided in radians o.e. but must be exact

$\begin{aligned} & \text { 9(i) } \quad \mathrm{f}^{\prime}(x)=\frac{\left(x^{2}+1\right) 4 x-\left(2 x^{2}-1\right) 2 x}{\left(x^{2}+1\right)^{2}} \\ & \quad=\frac{4 x^{3}+4 x-4 x^{3}+2 x}{\left(x^{2}+1\right)^{2}}=\frac{6 x}{\left(x^{2}+1\right)^{2}} * \\ & \Rightarrow \quad \text { When } x>0,6 x>0 \text { and }\left(x^{2}+1\right)^{2}>0 \\ & \Rightarrow \quad \mathrm{f}^{\prime}(x)>0 \end{aligned}$	M1 A1 E1 M1 E1 [5]	Quotient or product rule correct expression www attempt to show or solve $\mathrm{f}^{\prime}(x)>0$ numerator >0 and denominator >0 or, if solving, $6 x>0 \Rightarrow x>0$
$\begin{aligned} & \text { (ii) } \mathrm{f}(2)=\frac{8-1}{4+1}=1 \frac{2}{5} \\ & \text { Range is }-1 \leq y \leq 1 \frac{2}{5} \end{aligned}$	B1 B1 [2]	must be \leq, y or $\mathrm{f}(x)$
$\begin{array}{ll} \text { (iii) } & \mathrm{f}^{\prime}(x) \text { max when } \mathrm{f}^{\prime \prime}(x)=0 \\ \Rightarrow & 6-18 x^{2}=0 \\ \Rightarrow & x^{2}=1 / 3, x=1 / \sqrt{ } 3 \\ \Rightarrow & \mathrm{f}^{\prime}(x)=\frac{6 / \sqrt{3}}{\left(1 \frac{1}{3}\right)^{2}}=\frac{6}{\sqrt{3}} \cdot \frac{9}{16}=\frac{9 \sqrt{3}}{8}=1.95 \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	$(\pm) 1 / \sqrt{ } 3$ oe (0.577 or better) substituting $1 / \sqrt{3}$ into $\mathrm{f}^{\prime}(x)$ $9 \sqrt{ } 3 / 8$ o.e. or 1.95 or better (1.948557..)
(iv) Domain is $-1<x<1 \frac{2}{5}$ Range is $0 \leq y \leq 2$	B1 B1 M1 A1 cao [4]	ft their 1.4 but not $x \geq-1$ or $0 \leq \mathrm{g}(x) \leq 2($ not f$)$ Reasonable reflection in $y=x$ from $(-1,0)$ to $(1.4,2)$, through $(0, \sqrt{2} / 2)$ allow omission of one of $-1,1.4,2, \sqrt{ } 2 / 2$
$\begin{array}{ll} \text { (v) } & y=\frac{2 x^{2}-1}{x^{2}+1} \quad x \leftrightarrow y \\ & x=\frac{2 y^{2}-1}{y^{2}+1} \\ \Rightarrow & x y^{2}+x=2 y^{2}-1 \\ \Rightarrow & x+1=2 y^{2}-x y^{2}=y^{2}(2-x) \\ \Rightarrow & y^{2}=\frac{x+1}{2-x} \\ \Rightarrow & y=\sqrt{\frac{x+1}{2-x}} * \end{array}$	M1 M1 M1 E1 [4]	(could start from g) Attempt to invert clearing fractions collecting terms in y^{2} and factorising www

NOTE

For the domain of $g(x)$ in 9 (iv) the answer is $-1 £ x £ 1.4$. The published markscheme gives $-1<x<1.4$; this is because, at the time, the published markscheme was not the same as the final one used by the examiners and so the published markscheme contains a printing error. This did not affect marking as the examiners used a correct version.

